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COMPARATIVE EVALUATION OF APPROXIMATE METHODS FOR SOLVING
ONE-DIMENSTIONAL PROBLEMS INVOLVING MOVABLE BOUNDARIES

E. A. Bondarev and F. S. Popov UDC 536.01

Estimates of accuracy have been obtained for the most extensively employed ap-
proximation methods for the solution of the Stefan problem.

The overwhelming majority of problems involving unknown movable boundaries (problems
of the Stefan—Verigin type) are not solved in quadratures. It thus becomes necessary to
construct rather simple approximate solutions which might be used not only in estimation
calculations, but also to verify the effectiveness of computational algorithms based on fi-
nite-difference methods. An attempt is made in this article, through comparison of existing
analytical solutions, to evaluate the accuracy and scope of applicability for the most popu-
lar approximate methods of solution for Stefan problems in the case of a plane-parallel flow
of heat: the Leibenzon—Charnyi method (LChM) [1, 2], the Barenblatt—Goodman integral method
(IM) [3, 4], the successive approximation method (SAM) (5], and the combination method (CM)
whose essence is explained below.

In the general case, the parabolic equation

ot Xt Ox ax
is satisfied by the following functions [7]:
- 2 —_
() = erfe ¢), Ei(— 29, —e—*l‘—c—g—) — Vierie ) (2)
respectively, for n = 0, 1, 2. Here
g = x/2 Va—t. (3)
The solution of the specific boundary-value problem for Eq. (1) can be presented in
the form
T = A+ B (2). (4)

It is important here to underscore that A and B are not simply coefficients which must be
determined from specific boundary-value problems, but rather integration constants. In par-
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ticular, with a constant heat flow given at the movable boundary these coefficients will
be functions of x and t, but in that case a solution of the form of (4) will not satisfy
the heat conduction equation [6].

The coefficients A and B will be independent of x and t only under the following boun-
dary and initial conditions:

T{0, ) =T, n=20, (5)
. oT , ‘
lim (2x)% A = — Q (4a,1)\n—1)/2,
lim (2,01 = () (6)

For n = 1, 2, the left-hand side of Eq. (6) is multiplied by m.

T(x, 0) =T, ’ (7)

T (oo, t)=T,. (8)

An additional two conditions are formulated at the phase separation boundary S(t) for
the Stefan problem:

Tl = Tz = Tpll, (9)

or, T, ds
Ao = [pw .
T T T (10)

.__}\1

In this case the coefficients A and B will be constant only if
S=2aVauit. (1)
We will carry out the comparative evaluation of the approximation methods on the example
of the Stefan problem for plane-parallel heat flow (n = Q).

1. Boundary Condition of the lst Kind. In this case the exact self-similar solution
has the form [7]

0, = crf gerl a, (12)
0, = erfc (& V'« )feric (@ V), ‘ (13)
exp (—af) exp (— a%/x)
aKo= —= —K —————— 14
Vaerfa Vi erfe (a/V%) (14)
The Leibenzon—Charnyi method yields (o = a):
@1==Ua,€5::eﬁc—§:;g—, (15)
%
1 KrKe
%Ko = — — — .
a V= (16)
The integral method (a = a,, 1 = U,):
TR .
0, = /o, 0 = (———C/“ A (17)
l—p
Ko = ...1_ —_ _@,_ X
2 a(w—1) (18)

Here we find an additional parameter which associates the laws governing the motion of the
phase separation boundary S(t) and the thermal effect zone R(t). In this case, for the de-
termination of R(t) two conditions are given [3, 4]:

0, =0, 00,/0x = 0 for x = R({). (19)
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In the case of a self-similar solution [8]:

Rif) - uS (). (20)
The parameter u is found from the solution of the quadratic equation
(n 4+ 20p — 1 — 22 Kr) — 6x Ko ~ . (21)
Let us note that this parameter depends significantly on the initial data {8], whereas in
{9] it is assumed to be equal to 4.5-5.0.

The successive-approximation method (a = oz, u = uz):
@

0, == o+ §{ ——[1 —(T'w)*], (22)
9

2 4 Y102 g
0, |14 Lruple—0-L | k—Fo (23)

3x p—

! a , ] a(u-#?)J

{0 -= ———-—-——-——‘A:l, - B 24
@Ko 20 3 \]{ 2o (p— 1) K 6x (24)
w4 Dp— 1 — 2 K1) — 2 Kv (4 2) — 6% (Ko + _é_) == (), (25)

With the combination method (a = a,, u = u,) the temperature distribution in the first
zone is found by the method of successive approximations, while in the second zone it is
found by the integral method. As a result, the solution of the problem is given by formula
(22) and the second of the formulas in (17), as well as by the relationships

— LK (26)
2o J aip—1) '

(p+2)(u——]—-27&1('1')—6»¢(K0—,’--4—{—) = 0. (27)
s

2. Solution of the Problem for Boundary Condition of the 2nd Kind (6). In this case
the temperature distribution in the second zone retains its original form; however, the sense
of the coefficients a and u which are contained in formulas (13), (15), (17), and (23) changes.

The exact self-similar solution

@p:vn&ﬂa—mmy (28)
2
—  exp{—a?) KrKe exp(— a¥x%)
o Ko — - = — . 9
A 2 Va o erfe(a Vx) (29)
The Leibenzon—Charnyi method:
(')-1 ::a—';, (30)
oo L KrRe (31)
2 n
The integral method:
_ AKT
aKo = — — (32)

The temperature distribution in the first zone is given by formula (30), while the parameter
u is given by (21).

The successive-approximation mechod:
13— od

0, =0—{4+ >, (33)
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TABLE 1.
dary Conditions

Comparison of Calculation Methods for Various Boun-

o | J &= @y /e 100%
Method boundary conditions
1st kind ond kind | 1st kind 2nd kind
LChM 0,0800 0,2476 6,59 9,28
M 0,0747 0,2409 0,51 6,29
SAM 0, 0701 0,2239 6,69 1,19
cM 0,0745 0,2267 0,85 0,55
Exact solution 0,0751 0,2266 0 0

TABLE 2. Distribution of 1 — 0,(Z) in Thawing Zone for Boun-
dary Condition of the 1l-st Kind
Method, [/a 0,02 0,20 0,60 0,92 1
LChM 0,981 0,812 0,437 0,137 0,62
™ 0,980 0,800 0,397 0,075 —_
SAM 0,978 0,785 0,359 0,014 —_
CM . 0,980 0,800 0,394 0,072 —
Exact solution 0,980 0.800 0.399 0.080 0

TABLE 3.

Condition of the l-st Kind

Distribution of 0,(¢) — 1 in Frozen Zone for Boundary

Methods, { /ar 1 1,58 6,82 21,9 30,1
LChM — 0,033 | —0,355 | —0,906 | —0,980
™ — —0,040 —0,360 —0,922 —1,000
SAM —0,005 | —0.047 | —0.415 | —1.000 | —1.000
CcM —_ —0,040 —0,361 —0,922 —1 000
Exact solution —— —0.039 —0.375 —0.916 —-0,983
TABLE 4. Values of the Function 0,(7)/0,7)(0) for Boundary Con-

dition of the 2-nd Kind

Methods, /o 0 0,20 0,60 0,80 0,98 1,00

1.ChM 1,112 0,908 0,501 0,298 0,115 0,094

M 1,081 0,878 0,471 0,267 0,084 0,064

SAM 0,988 0,785 0,382 0,183 0,008 ——

CM 1,000 0,797 0,394 0,195 0,020 0,000
Exact solution 1,000 0,797 0,393 0,195 0,019 0

TABLE 5. Values of the Function 0,({) — 1 for Boundary Condi-
tion of the 2-nd Kind
Methods, /a p 1 1,17 2,74 4,40 7,45 9,72
i
LChM — —0,016 | —0,310 | 0,589 | 0,876 ~0,963
M —0,025 | —0,351 | —0,635 | —0,931 —1,000
SAM —0,003 | —~0,046 | —0,411 | —0,744 —1,000 —1,000
CM . — ~{),040 | —0,363 | —0,640 | —0,936 —1,000
Exact solution — —0,040 | —0,373 { —0,657 | —0,919 —0,977
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— 1 —a? = { am+m]
@Ko =— A 2a(u———l)+ 6% (34)
Here u is determined from Eq. (25).
The combination method:
i | —a? _ ® e
FRO T am—1 (35)

Here él coincides with (33), and u is found from Eq. (27).

Let us note that the transcendental equation (14) has positive roots for all values
of the initial parameters, whereas in the case of Eq. (29) the roots are positive only when
the following inequality is satisfied:

Kt Ke<< Vit /2. (36)

It is interesting that it is precisely such an inequality that follows from formula (31). Other
approximate solutions bring us to somewhat dlfferent limitations on the magnitudes of the
initial parameters.

A quantitative comparison of the considered approximation methods relative to the exact
solutions was carried out for the case of the thawing of the frozen soil in the case of the
following values of the dimensionless complexes: A = 1.433, x = 1.755, Ke = 1.082, Ko =

= 1.722, Kt = 10, Kt = 0.1. The results of the calculations are presented in Tables 1-5.
We see that in the determination of the law governing the motion of the phase-separation
boundary the Leibenzon—Charnyi method always majorizes the exact solution (see Table 1);
when the phase-separation boundary moves slowly it is the integral method that is most exact
(see the second and fourth columns of Table 1); however, with increasing velocity it falls
behind the combination method and even behind the successive-approximation method {(the third
and fifth columns in Table 1)}; in ths calculations for the temperature distributions in the
thawing zone, it is the combination method that is most exact (see Tables 2 and 4), while
for the frozen zone this is valid only for the initial segments of the temperature curve
(see Tables 3 and 5).

NOTATION

t, time; x, a coordinate; T, temperature; Q, specific heat flow (W/m); Ai{s Ci» a4, ther-
mal conductivity, the volumetric heat capacity, and thermal diffusivity of the thawing (i =
1) and frozen (i = 2) zones; 2, latent heat of phase transition between ice and water; w,
moisture of the soil (in fractions of unity); p, density; S(t), R(t), movable boundaries
of the phase transition and the thermal effect; Ke = ¢X2027 1€13 A = Ao/ Xy x=ay/oy; Ko =
Lpw/e(Te ~ T h) Kossovich number; Kt = (Tph -~ To)/(T — Tph ) > 0; 0 = (T1 T )/(Tph ~
rfc}; C; = (Tz T )/(Tph - T ) KO = lpw/(Q/al) Kt = (T h - T )/(Q/A ) @1 = (Tl Tph)/

Q/ Ay
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